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Objectives

The primary objective of the research is to perform ground-based analysis and experiments on

the interaction and coalescence of drops (or bubbles) leading to macroscopic phase separation. Migration

of the drops occurs as a result of the individual and collective action of gravity and thermocapillary

effects. Larger drops migrate faster than smaller ones, leading to the possibility of collisions and
coalescence. Coalescence increases the rate of macroscopic phase separation, since the result is larger

drops with higher migration rates. It is hoped that the understanding gained will lead to the design of

microgravity experiments to further elucidate the mechanisms governing coalescence and phase sep-
aration.

Research Tasks

The processes described above are modeled using population dynamics balances which allow for

spatial nonuniformities in finite systems. The interactions of pairs of drops or bubbles in dilute dis-

persions are accounted for using recent results obtained for collision efficiencies in gravity-induced,

thermocapillary-induced, and combined motion of different-sized drops or bubbles (Zhang and Davis,

1991, 1992; Zhang et aL, 1993).

A significant effort is also devoted to the development and performance of ground-based

experiments which may later be adapted for reduced-gravity flight opportunities. Optical techniques
are used to follow the rate of accumulation of the dispersed phase in a separate layer due to simultaneous

migration and coalescence of a variety of transparent immiscible systems. Microvideo and image

analysis techniques are also used to follow the trajectories and coalescence of several interacting drops

or bubbles of different sizes. These experiments are being performed under isothermal conditions, with

motion and phase separation occurring due to gravity. It is hoped that a temperature gradient will be

introduced later, so that thermocapillary as well as gravitational motion can be studied. In all cases, the

results are compared with predictions of the theory.

Significance

The research provides a fundamental understanding of how drop or bubble migration due to

gravitational and nongtavitational mechanisms interacts cooperatively with coalescence to promote

macroscopic phase separation in an immiscible dispersion. The experiments and theory provide a basis

for studying and controlling the rate of phase separation in space science applications, such as processing

liquid-phase miscibility gap metals, degassing molten materials, gassing cell cultures, and separating

aqueous biphasic systems.

Progress To-date

The population dynamics equations for homogeneous dispersions having no spatial variation or

phase separation have been solved for droplet growth due to the separate effects of Brownian, gravi-

tational and thermocapillary motion and coalescence (Wang and Davis, 1993) and due to the combined

effects of thermocapillary and gravitational motion and coalescence (Zhang et al., 1993). Details are

reported in the manuscripts and in the final technical report on NASA Grant NAG3-993. Included

among the key results are the discoveries of thermocapillary repulsion, in which a highly conducting
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small drop will move faster than a nearby larger drop, thereby preventing coalescence, and of a

collision-forbidden region, which occurs for antiparallel alignment of the temperaturegradient and

gravity vector due to the different dependencies of gravitational and thermocapillary relative motion

on the separation distance of two drops or bubbles.

A theoretical analysis has been performed (Wang and Davis, 1994) for nonhomogeneous dis-

persions undergoing simultaneous phase separation and drop motion and coalescence due to gravity.

A schematic of the process analyzed is shown in Figure 1. Numerical results are shown in Figures 2-4.
Note that the average drop size and rate of phase separation initially increase due to coalescence, and

then decrease due to the larger drops moving out of the suspension. The volume fraction of the dispersed

phase continuously decreases as the drops rise or settle out of the dispersion. A key dimensionless

parameter, N,, representing the ratio of sedimentation and coalescence time scales, governs the process.

Experiments to observe drop coalescence and phase segregation due to gravity have been per-

formed with 1,2-propanediol drops in dibutyl sebacate and with an aqueous biphase mixture of 1%

dextran (MW = 500,000) and 6.5% polyethylene glycol (MW = 8,000) by weight. In both cases, the

drops are heavier than the continuous phase, in contrast to the results illustrated in Figs. 1 and 3. Results

(Figs. 5 and 6) for the phase separation rate versus time are in good agreement with the theory and have
been used to infer values for the composite Hamaker constant which represents the strength of the

attractive van der Waals forces. Typical results for the position of the phase interface versus time are

shown in Figure 5. Note that the S-shaped curve is indicative of coalescence--the initial phase-separation
rate is slow, then it increases due to coalescence, and then it decreases as the larger drops move out of

the dispersion.

Planned Research

The following tasks are planned for the third year:

1. Modeling of Combined Gravitational and Brownian Coalescence

Population dynamics modeling of coalescence due to simultaneous gravitational and
Brownian motion of drops or bubbles will be completed using the collision efficiencies recently

predicted by Zinchenko and Davis (1994). These collision efficiencies show considerable syn-
ergism of the two mechanisms over a wide range of Pdclet numbers.

2. Experiments on Gravity.driven Coalescence and Phase Separation

Additional microvideo experiments will be used to observe and quantify drop coalescence
and phase separation due to gravity under isothermal conditions for several liquid-liquid systems.

Key predictions of theory which will be tested by the experiments include that drop coalescence
increases with increasing drop concentration and container length, and that drop coalescence
decreases with increasing drop viscosity. One or two manuscripts on the results will be written.

3. Modeling of Thermocapillary-driven Coalescence and Phase Separation

The first portion of this task will be similar to our completed work for gravity motion,
except that thermocapillary motion and collision efficiencies will replace those for gravity in a
one-dimensional system. A key difference, however, is the implications of thermocapillary

repulsion for which little or no coalescence and phase separation is expected at high drop thermal
conductivities. A second portion involves other geometries, such as a container which is heated

or cooled on all sides, rather than just at the top and bottom, so that drop migration toward the

periphery or center occurs.
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Fig. 1-Schematic ofthe time evolutionof the phmm separationprocem due

to the simulta_neotmmigration and coalescenceofrimingdrops or bubbles.
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Fig. 4-Predicted rate of
phme separation versus
time for a dispersion hav-
ing _ = 0.1, _ - 0.2
(solidlines),_ = 0.1
(duhed lines), _o = 0.05
and c_erent N, in a con-
tainer of finite depth.

0._

0_
0.7-

Ob

i°-0.4"

0._

O2"

._r_B_afJJ
0.1'_

T_re(mmum)

I -
i2.0

°1
°_!0 _3'0 ' ' s'o ' ' 9'o ' '_0' '1_0

FiB. 5-Meuured height
of Jegregated m/nority
phase (normalized by fi-
nal height) versus time
for 1,2-propanediol drops
at 6¢ = 0.034 in dibutyl
eebacate with H=IO cm

(open squares) and H =
14.5 cm (cloeed squares).
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